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Abstract

It is commonly recognized that Covid-19 fluctuates in waves of infection activity, but much less is known
about how waves differ or coincide when they are observed from different geographical locations. In this
paper we aim to study the geographical patterns of infection waves throughout the Covid-19 pandemic. We
propose a novel methodology for doing so, which both segments infection time-series data into waves and
then clusters them together. With it we study US state and county level data, as well as data from European
countries. From a clustering, we aim to bring understanding to viral spread by measuring geographical
proximity and (for states and countries) similarity in terms of public health response.

1 Introduction

Understanding and communicating patterns from data which varies in both space and time is a difficult but
important problem, appearing in similar forms across domains such as climate science, biology, or ecology.
Prompted by the recent Covid-19 public health crisis, we study this problem in an epidemiological setting
where data is collected from a set of spatial locations with temporally evolving wave-like infection patterns. As
Covid-19 progressed the idea of the virus spreading in waves became increasingly popular, with infections rising
and falling due to changes in season, patterns of contact, or viral evolution [38]. For example, figure 1 shows
infection time series for two US states which have multiple peaks with high infection levels.

Throughout our study we refer to waves, wave segments, or simply segments as contiguous subsets of an
infection time-series which are characterized by abnormal or increased viral activity. We argue that in order to
effectively understand the spatio-temporal patterns of viral spread it is important to distinguish waves from
their time-series as a whole. To understand why, refer again to the example in figure 1 to see that the states
Massachusetts and Vermont experienced the pandemic in different but sometimes similar ways. Massachusetts
had early waves around April 2020 and January 2021 which were largely non-present in Vermont. Later on in
the time series, however, the two states do show similar patterns with waves in January and May of 2022 that
are only slightly different in scale or time-alignment. We argue that while it should make sense to group the
locations together during the waves in 2022, it makes much less sense to claim that these locations experienced
the pandemic similarly as a whole. In this case, accounting for more temporal granularity gives deeper insight
to the relationship between locations. One should allow locations to evolve over time in different but sometimes
overlapping ways. However, there is also something to be said for having too much granularity – with the
extreme case being an analysis that only considers single points from each time series. In that case, minor
differences in timing or scale could distract from the possibility of two locations sharing similar trends on a
larger time scale.

In this study we use waves to characterize the evolving spatio-temporal patterns of Covid-19. To do so we
introduce a methodology which 1) splits each location’s time-series into wave segments and then 2) clusters
these waves together in a way which respects their position within the global time-frame. To find wave segments
we modify the classic k-segmentation problem to fit wave-like unimodal or SIR representative functions to
k contiguous, non-overlapping segments of each time series. We then cluster these wave segments using a
hierarchical algorithm with added time constraints and a dynamic time warping distance. In our experiments
we study clusters from datasets of US states, European countries, and US counties. For states and countries,
we also use auxiliary geographic and public health data in an attempt to understand results and validate with
comparisons against random baselines. We find that in the case of US states we are able to show that clusters
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are significantly similar in both geography and governmental response. For our the European country dataset,
however, the same conclusions did not hold. Locations grouped together as clusters were less likely to be similar
with respect to these validation measures, suggesting a possible difference in how the two geographical regions
experienced the pandemic. Despite these unclear analytical difficulties, we argue that our study introduces a
novel problem, contributes a methodology to address it, and brings attention to the computational problems
associated with it. We provide a full implementation that includes our experimental results. 1

Figure 1: Time-series of daily new infections for US states Massachusetts and Vermont. Infections are
reported on normalized (per 100,000 persons) scale, and have been pre-processed to remove noise. They are
shown for a time period between late march of 2020 and late August of 2022.

2 Related Work

Our study draws from previous work on Covid-19, epidemiology, time-series segmentation, and time series
clustering. We argue that the proposed methodology pieces these topics together in a novel way.

Covid-19: Our work is prompted by the devastating impact of Covid-19 and is inspired by the scientific
work that has been done to address it. In particular, we draw from a line of work which attempts to unravel
the complex geographical patterns of spread seen throughout the pandemic. Work from [10][34][35] attributes
differences in infection curves to differences in factors ranging from geographical distance, population size,
population density, population ages, and patterns of movement or contact. Furthermore, we reflect ideas from [3]
to emphasize that local public health policy differences also play a significant role in producing epidemiological
differences between locations.

We also address the fact that these geographical relationships are non-static. As the pandemic evolved,
infection levels, contact patterns, and public health policies were consistently changing in part due to actual
viral mutations of the disease. The result of such was the observed occurrence of time localized waves of spread,
which [38] [2] [6] help to define and characterize.

Work from [22][37][13] uses clustering as a way of analyzing the complicated geographical patterns seen from
their data. However, their clustering is static in the sense that they don’t consider localized variations in time.
Other studies from [8][28] use matrix factorization techniques to analyze spatio-temporal patterns, but are again
limited by the fact that they don’t allow locations to to evolve or change their cluster membership over time.

Other methods do allow for more temporal granularity, for example the work done by [23][11] leverages
spatial auto-correlation tests to study both spatial and temporal patterns in Covid-19 data. This methodology
originates from a long line of work [20][29][25] that searches for spatial or spatio-temporal clusters by enumerating
over all possible location pairs within heuristically chosen (often evenly spaced) time-windows, and searching for
those with statistical significance under some chosen model of concentration or similarity. We argue that these
are limited by the need to create new clusterings for every specific time point or for every heuristic choice of
time window. We distinguish our work by explicitly defining, modeling, and clustering waves, or short periods
of pronounced infection. Doing so not only allows us to capture and visualize geographical patterns, but also
gives us the freedom to let them evolve over time in a more unified and structured way.

1https://github.com/kevin-q2/wave_cluster/tree/main
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Segmentation: Our work is in principle very similar to work for the k-segmentation problem [4] or more
specifically the unimodal k-segmentation problem studied by [15]. They introduce and optimally solve the
problem of fitting k piece-wise, constant segments to a time series with the constraint that the concatenation of
their segments forms a unimodal curve. We employ a similar approach, adopting their dynamic programming
techniques, with the important modification of requiring every segment to be a unimodal curve. We also
contribute the idea of using an epidemiological approach that fits segments with Susceptible, Infected, Recovered
(SIR) models. To do so, we follow work from [9][7] which studies the problem of using non-linear least squares
regression to fit parameters to the SIR model.

Other approaches to the time series segmentation problem have greedily fit representative functions to k
segments of the data by iteratively searching for segments with small error of fit [18]. We also note that work
from [33] makes improvements in efficiency to the dynamic programming approach in [15], introducing faster
approximation algorithms that perform well in practice.

Recent work on segmentation in the context of Covid-19 by [17] introduces a new algorithm for segmenting
time-series data with re-occurring wave patterns. We include the use of their algorithm in our experiments for
comparison and give a brief explanation for how it works in section 4.1.

Time Series Clustering: Clustering of time-series is a very challenging problem when data is lengthy,
irregular, or noisy. There have been many different approaches to the problem which is nicely surveyed by
[1] [21]. Most methods can be characterized by 1) how they choose to represent or find distances between
time-series and 2) the algorithm they use to partition them. Previous approaches have typically focused on
finding good notions of distance or otherwise transforming the data into some comparable feature space, and
then applying standard k-means or hierarchical algorithms for clustering. Methods which are most relevant to
our work are denoted by [1] as ’shape’ based approaches because they employ the use of dynamic time warping
distance [30] in order to allow for comparison of time-series data which is mis-aligned in time. Doing so gives
more importance to the overall shape of their patterns. A recent study by [22] uses dynamic time warping
distance in combination with hierarchical clustering in order to find clusters of Covid-19 time series data.

Our work makes similar use of dynamic time warping with hierarchical clustering, but is fundamentally
different from many previous approaches, including [22], because we focus on clustering segments or sub-sequences
taken from each location’s time-series data. While most work on time-series clustering focuses on clustering
whole time-series, substantially less has been done to cluster segments of them. Work by [14], for example,
includes a similar sub-sequence clustering methodology, but only does so as a step towards their goal of clustering
whole time-series. This trend seems to be in part because of influence from [19] which argues against taking
such an approach. We claim, however, that the issues they propose are irrelevant for the setting of our study.
This is in particular because of the fact that they focus on clustering sliding-window segments from a single
input time-series whereas we cluster carefully modeled segments from multiple locations, never allowing two
segments from the same location to be clustered together. We back this claim by validating our method with
experiments comparing against randomized clustering baselines.

Our approach is also unique in the sense that we enforce that each cluster’s segments must come from similar
times. Because each time-series (corresponding to a location) lies within some common time period, we can
record the subset of times occupied by a segment and choose to only cluster segments which are similar in
time. By doing so we narrow our focus to finding clusters which are positioned both spatially and temporally
within the data. We employ a hierarchical graph clustering approach in which each segment is a node, edges are
present between segments which are similar in time, and clusters are required to be cliques. In that regard,
our clustering algorithm is most similar to existing graph clustering algorithms [31] and community detection
algorithms [27].

3 Datasets

We study three datasets reporting daily new infections of Covid-19 for multiple locations. Each is collected
and attributed to Google’s Covid-19 open data repository [36]. We’ll represent each dataset D as an m × n
matrix made up of n time-series vectors of length m. Each of the n time-series corresponds to a single location
and is a daily record of that location’s reported incidence, or number of new cases, of Covid-19 from a period
starting with the beginning of March 2020 (or the beginning of February 2020 for European locations) and
ending around mid-September of 2022. The different geographical regions we consider for our datasets are the
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50 US states and Puerto Rico, 46 European countries, and 217 counties from the Northeastern Region of the
US. We’ll refer to their datasets as Dus, Deu, and Dco respectively.

For each location in both of our datasets, we normalize their corresponding time-series by the specific
location’s population size and then report in the form of cases per 100,000 persons. That is, for each of these
time series we divide every point by a static population count given by [36] and then multiply by 100,000. To
remove noise due to reporting inconsistencies we use a sequential windowed average procedure that applies a 15
day windowed average of the data points 3 times. Specifically, for every location each data point is replaced
by the average of itself, all the points 7 days before, and all the data points from the 7 days after. Points
at coming from the first 7 or last 7 days seen in each time-series are removed for lack of information. We
repeat this procedure 3 times, finding this to be sufficient for removing a few very noisy occurrences in the data.
Representations of the processed data can be seen in figure 1.

For our analyses we also consider auxiliary information regarding geographic position and government
response. For locations in the US we are able to use geographical coordinates for their centers of population
collected by the US Census Bureau [5], but for locations in Europe we use central geographical coordinates
reported in Google’s repository [36]. To study trends in governmental response and public health we also
incorporate information collected by the Oxford Covid-19 Government Response Tracker project [16]. For
all locations from Dus and Deu the Oxford dataset dataset provides a time-series of scores rating the local
government’s stringency and proactive response towards containment policies (closures for school, work, or
other events – as well as restrictions on movement, travel, or transportation) and public health policies (public
information campaigning, testing, contact tracing, facial coverings, and vaccinations). Scores are reported on a
scale from 0 to 100 with higher scores indicating significant government intervention to stop the spread of the
virus. Throughout our analyses we’ll study these datasets and use the auxiliary data to validate and supplement
our results.

4 Methodology

We begin by introducing the following notation that is used throughout the rest of this paper.

• Let D be a m× n dataset where each of n locations has a length m time series associated with it. We
refer to Dus, Deu, and Dco as the US state, European country, and US county datasets respectively. We’ll
also use Dℓ to denote the ℓth column of a dataset D, which is also the time series associated with the
location indexed by ℓ

• Let a wave w be a length s segment (or sub sequence) obtained from one of the time series vectors in
D. We may also write wi

ℓ to denote a wave as being the ith wave segment taken from the time series for
location ℓ, or wi for a non-specific location. We often also generally denote time series vectors as x or y,
and indicate indexed subsets of them with xt:t′ , or x:t, xt: for slices taken from the beginning or until the
end of the vector. For a single time indexed element of x we’ll write xt

• Let W be the size q set of all wave segments found from each time series in D. We also write Wuni, Wsir, or
Wwav to denote sets of waves found specifically with unimodal, SIR, or wavefinder segmentation methods.
We also use Wℓ with size qℓ to denote the subset of wave segments coming specifically from location ℓ

• Let d denote any distance function. We’ll use ddtw or dcomp when referring to specific distance notions
such as dynamic time warp distance or complete linkage distance.

• Let a clustering C be a set of r clusters {C1, ..., Cr} where each cluster Ci is a set of segments Ci ⊆ W with
the property that C1 ∪ C2 ∪ ... ∪ Cr =W and Ci ∩ Cj = ∅ for all i, j.

4.1 Segmentation

Given a length m infection time-series vector x and a number of segments k, our first task is to cut x into k
contiguous and non-overlapping chunks of time (or waves) w1, ..., wk. To do so we search for the best k − 1
cut-points or boundaries with which to split the data. Following the classic k-segmentation problem [4][15] our
approach is to fit k wave-like representative functions to x, using dynamic programming in order to find the
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optimal timing for each. In general we’ll have some space of representative functions M and an approximation
function fM : Rs → Rs that takes as input a length s ≥ 1 sub-sequence of x and computes a new wave vector w
as the best approximation to to it from within the model space M . We use the dynamic program k-segment()
shown in algorithm 1 to find and compute the k cuts with smallest segmentation cost ck, measured with euclidean
distance.

Algorithm 1: k-segment()

Input: x, k, fM
Output: ck

if k = 1 then
ck ← ∥x− fM (x)∥2

else
ck ← mint<|x|−(k−1)v ∥x:t − fM (x:t)∥2 + k-segment(xt:, k − 1, fM )

For this approach we’ll also use a minimum wave segment size s ≥ v, to ensure that the algorithm finds
non-trivial sub-sequences. An implementation of this algorithm which finds the best segment boundaries must
also keep track of costs by filling out entries of a size m× k matrix, tracing back through it in the end to find
the boundaries which gave the best k-cost, ck. With the simplest model space M of constant vectors (entries all
the same value), the best approximation function fM computes the mean of its input. In this case filling out
each entry of the size m× k cost matrix takes O(m) time, and therefore the implementation as a whole can be
computed in O(m2k). For the purposes of our study, however, we’ll use this algorithm with attention restricted
to the following wave models M :

Unimodal Models denoted as Muni are regression functions meant to fit data which is monotonically
increasing until it reaches a single pronounced local maximum, and then monotonically decreasing afterwards
[12]. Both monotonically increasing and decreasing isotonic regression models are fit to the areas before and
after the local maximum change point, which is found optimally as the point which produces the smallest error.
Specifically, we define increasing and decreasing isotonic regression functions:

f1(y) = arg min
ŷ | ŷi<ŷj ∀i<j

∑
i

(yi − ŷi)
2

f2(y) = arg min
ŷ | ŷi>ŷj ∀i<j

∑
i

(yi − ŷi)
2

and concatenate their response in a single fitting function fWu
(x, t) = (f1(x:t), f2(xt:)) The optimal change

point t∗ is then fit the data by minimizing:

t∗ = arg min
t
||x− fWu(x, t)||2

In general, fitting a unimodal model to a length m sequence can be computed in O(m2) time [12][15],
implying that k-segment() with the unimodal model can be computed in O(m3k).

SIR Models denoted as Msir are dynamical systems meant to replicate the process of a disease by moving
a fixed population of N individuals between categories Susceptible, Infected, and Recovered. The model begins
with an input amount of persons in each category: S0, I0, R0. It also takes as input a spread parameter β ∈ R≥0

which describes the average number of infection prone ”contacts” that an individual has over a single unit of
time (either spreading the disease to or away from the individual). Similarly a recovery rate parameter γ ∈ [0, 1]
specifies the fraction of infected individuals which move from the infected to recovered categories within over a
single unit of time. We’ll denote the set of parameters necessary to define an SIR model as Ω = {S0, I0, R0, β, γ}.

At each time t ≥ 0 the number of susceptible, infected, or recovered persons is given by the functions
S(Ω, t), I(Ω, t), R(Ω, t) respectively, with the condition that S(Ω, t) + I(Ω, t) + R(Ω, t) = N for all t. These
functions change over time according to the following set of ordinary differential equations:
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∂S

∂t
= −βSI

N

∂I

∂t
=

βSI

N
− γI

∂R

∂t
= γI (1)

To construct an SIR approximation to our data we’ll need to optimally choose a parameter set Ω. Since our
data is a record of daily infections, we’re particularly interested in finding a model with a well-fitting infection
curve I(Ω, t). However, we carefully make the distinction between I which computes the prevalence of infections,
or the total number of individuals currently infected at every t, and our data which records the incidence
of infections, or the number of new infections at every t. To translate between these settings we’ll compute
differences between successive time steps:

fMsir
(Ω, t + 1) = S(Ω, t)− S(Ω, t + 1)

And choose parameters Ω∗ to minimize the error

Ω∗ = arg min
Ω

∑
ti

(xti − fWs(Ω, ti))
2

Unlike the unimodal model, choosing parameters requires expensive non-linear least squares fitting with
gradient descent, which often makes this difficult to compute for long time series. Briefly we may describe the
complexity of fitting a model with p parameters to a length m vector using non-linear least squares as O(ωmp2)
where ω is the number of steps taken to reach convergence during the gradient descent procedure [26]. For our
case of 5 parameters this gives an overall k-segment() complexity of O(ωm2k), but we note that to reach
convergence ω often needs to be large and can increase with the size of the input vector.

Figure 2: Comparison of Time Series segmentations with both unimodal and SIR k-segment() , and
wavefinder() . (Left) A visual representation of the chosen segment boundaries for each algorithm when
computed on the infection time-series for New York State. (Right) We also show a cdf of the disagreement
distances for each pair of deterministic algorithms, when computed for every time series in Dus. With this
we include a baseline comparison to random segmentation for unimodal, computed over 10,0000 samples for
each location.

Finally, we’ll also consider two other segmentation methods for comparison. The first is a recent method
of time series segmentation proposed by [17]. Their algorithm, wavefinder() , finds peaks or pronounced
periods of increased infection by searching local maxima and local minima and then carefully filtering out noisy
occurrences. Unlike the others this algorithm does not fit representative waves to segments of the data, making
it fast and generally applicable to any data with wave-like patterns. Finding local maxima and minima is done
in O(m) and an extra parameter controlled filtering process taking only a small amount of extra time. We note
that while this algorithm does have the advantage of being very fast, it lacks careful modeling for its segments
and is reliant upon successful filtering. Because their segments are taken to be everything left over after the
filtering process is complete, there is also very little control in choosing the number of segments.
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The other baseline comparison we use is a randomized method k-random-segment() for splitting the data
into k segments. With a minimum segment size of v this algorithm sets aside kv chunks of time, and then
uniformly at random chooses k−1 cut points from the remaining set {0, 1, 2, ..., |x|−kv}. Let θ = {θ1, θ2, ..., θk−1}
be an ordered set of these randomly chosen cuts. To cut the original time series we then add back the chunks of
time which were set aside. Specifically, transform each cut i as θi = θi + iv. Doing so allows us to uniformly
sample from the space of segmentations that satisfy the minimum length requirements.

We compare k-segment() with both unimodal and SIR models to wavefinder() visually for a single
time series vector on the left of figure 2. We also compare the segmentations more rigorously by following [24]
and computing the disagreement distance between them. Briefly stated, given any time series vector x the
disagreement distance between two segmentations of x is the fraction of pairs of points which belong to the
same segment in on segmentation, but belong to different segments in the other. In the right hand plot of figure
2 we show the distribution (plotted as a cdf) of these distances when computed for each pair deterministic of
segmentation methods over all of the time-series from Dus. One can notice more conclusively that the unimodal
k-segment() algorithm and the wavefinder() algorithm are both very similar, often only disagreeing on
< 5% of pairs for a time series. That being said, we note that all of the segmentation methods shown are similar
enough to have distinctly smaller disagreement distances to each other than to a random segmentation with
k-random-segment() . In the plotted figure we show the distribution of differences between the unimodal
method and its random counterpart, for 10,000 samples at every location.

4.2 Dynamic Time Warping

A key feature of our methodology, and one which is often useful for time series clustering [1], is the use of
dynamic time warping (dtw) to compare two waves which are not necessarily aligned in time. Let x ∈ Rm and
y ∈ Rm′

be two waves or time series we wish to align using dtw. Let d : R× R→ R be some standard distance
function for comparing elements of x with elements of y. For all of our experiments we use euclidean distance for
d. Let ddtw(i, j) be this dynamic time warping distance between x:i and y:j . Then we can express a penalized
version of the dtw distance in the following recursive format:

ddtw(i, j) = min


λ1d(xi, yj) + ddtw(i− 1, j)

λ1d(xi, yj) + ddtw(i, j − 1)

λ2d(xi, yj) + ddtw(i− 1, j − 1)

Any solution to the dtw problem creates an alignment path which we follow [32] in denoting as length q
sequence of indices (0, 0), (i1, j1), ..., (iq−2, jq−2), (m−1,m′−1), where each ik represents the index of x matched
or aligned with the index jk of y. The alignment is constrained so that the head (0, 0) and tail (m− 1,m′ − 1)
of x and y must be matched together, the indices must be monotonically increasing ik−1 ≤ ik, and all indices
from each vector must be represented somewhere in the path. A simple dynamic programming implementation
can compute the optimal alignment in O(m ·m′) time.

To this standard form we add penalties λ that force dtw to create alignment paths which are penalized for
making sequential matches (ik−1, jk−1), (ik, jk) where either ik−1 = ik or jk−1 = jk. In other words, we want to
encourage the alignment to be making forward progress in both vectors. In alignments where x or y have one
index which is stagnantly matched to many indices from the other vector, the shapes of the given waves are
not preserved. For our experiments we set λ1 = 5 and λ2 = 1, finding this to be a setting which matched our
intuition for an alignment which allows for time differences, but ultimately still preserves the shape of each wave.

We also take careful precaution to normalize the input waves and the computed distance before performing
any clustering, so that distances between waves are comparable regardless of length or scale. First we normalize
both x and y by the largest value seen in either vector: max {maxi xi,maxj yj}. This re-scaling ensures that
the euclidean distance between every matched xi and yj is a value between 0 and 1. Then after computing the
dtw distance ddtw between x and y, we divide by the maximum possible distance between two 0-1 scaled vectors
of the same lengths. If λ1 > λ2 this can be found simply found as λ1(m + m′ − 2) + λ2.
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4.3 Clique Clustering

Any wave w is associated with a ordered, consecutive subset of times from its parent time series. Let
T (w) = {t1, t2, ..., ts} be this set of times for wave w. We design our algorithm to cluster waves in a way which
ensures they aren’t too different with respect to their position in the global time frame. For example, we
wouldn’t want to cluster together a wave which happened in April of 2020 with another that happened in June
of 2022. We’ll therefore define a time overlap fraction parameter δ and require that for any waves wi and wj to
be clustered together, both of the following time-similarity conditions hold:

|T (wi) ∩ T (wj)|
|T (wi)|

≥ δ
|T (wi) ∩ T (wj)|

|T (wj)|
≥ δ (2)

For an entire set of waves W found by in the segmentation process we then create a time overlap graph
Gδ(V,E) where V contains nodes for each wave, and edges (i, j) ∈ E are only present if wi, wj satisfy the stated
timing conditions in equations (2). For our purposes we will be interested in cliques within this graph, since
they must correspond to sets of waves which all have significant overlap with each other in time. Therefore, we
introduce the following hierarchical clustering algorithm which partitions W into r clusters corresponding to
cliques in Gδ. Our algorithm keeps a list of clique clusters C and merges them hierarchically using a complete
linkage distance dcomp computed with dtw:

Algorithm 2: clique-cluster()

Input: W, r, Gδ

Output: C
C ← W;

while |C| ≥ r do

if ∃ i, j s.t. clique(Ci ∪ Cj) then
i, j ← arg mini,j dcomp(Ci, Cj) s.t. clique(Ci ∪ Cj);
if dcomp(Ci, Cj) > η then

return

else
merge(Ci, Cj);

else
return

We denote clique() as a function to check whether a set of nodes forms a clique in δ, terminating early if there
are no clusters in C can be joined to form a clique. Importantly we also define a distance threshold parameter η
past which we do not allow cliques to be merged. Unless one of these conditions is broken early, the process
continues until we’ve formed r clique clusters. With ddtw distances pre-computed for every pair amongst q input
waves, careful tracking and updating of a pairwise distances between cliques leads to a clustering complexity of
O(q3). In practice we choose the number of clusters r by simply iterating until it’s no longer possible to merge
two cliques.

For our experiments we’ll then compare this to a randomized version which we’ll call random-clique-cluster()
in which we simply replace the selection of clusters with minimum dcomp by a uniform random selection of from
all cluster pairs which satisfy the clique condition.

5 Experiments

We first focus on the state-level dataset Dus and use the pre-computed unimodal, SIR, and wavefinder
segmentations as input to our clustering algorithm. To select values for our time overlap parameter δ and
distance threshold parameter η we compute silhouette scores (described later in this section) for clusterings over
a range of parameter values, and select the parameter settings that produce the highest scores, and therefore
have the most distinctive wave clusters. We show a clustering of Dus in figure 3.
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Our algorithm often produces many clusters which can often be small or irrelevant, posing a problem for
succinct visualization and clear understanding of of the results. We note that this issue is often inherent to
complicated spatio-temporal problems, and present a simple, albeit incomplete, solution for viewing results from
our methodology. In each of the rows of figure 3 we select a single time point t from the global time period of
Dus and search for clusters which have all of their wave segments passing through or containing the time t. In
the maps on the left we show the geographical locations with each cluster colored distinctly. States which are
left un-colored belong to clusters which are not fully represented by the time point. In the corresponding plots
on the right we display the an average wave segment for each of the clusters, with the average of a cluster being
taken across the time-period shared by each of its waves. New cases per 100,000 persons are displayed on a
log scale for ease of comparison between plots, and shaded regions show the standard deviation for each of the
average segments. To select t values for plotting we hand-picked more or less evenly spaced time points, with
some preference given to times in which the US had high infection activity.

Moving downwards in the figure 3 and following the progression of time one can notice how the pandemic
evolved and how our clustering methodology is able to distinguish patterns of spread. In the beginning at
time-stamp 3/22/2020 (top row) we find 5 distinct clusters with a wave starting in the north east at New York,
Massachusetts, and New Jersey (dark blue), and afterwards spreading to other surrounding states (light blue)
as well as parts of the midwest (light blue / green). This is later followed by a wave experienced commonly
by many southern and western regions of the US (purple). In this time period of early 2020, our conclusion is
that different regions of the US experienced beginning of the pandemic differently, with the south and the west
lagging in time behind states like New York in New Jersey which were, at the time, epicenters of spread in the
US.

The second time period we analyze is from clusters containing the time 11/27/2020 (second row). This period
of the pandemic saw a large rise in cases starting in the midwest at states like North and South Dakota, and then
spreading outwards across the entire US through the winter. Again we notice geographical contiguity among
the midwest, south, and parts of the northeast, and attribute this to each region having significant differences
in timing or scale of the wave experienced. We find fewer distinct patterns in the time period surrounding
9/23/2021 which came as a build up to the large wave experienced by nearly every US state in the winter
of 2021-2022 and which we display with the time point 1/1/2022. During this time all clusters have similar
waves, with distinctions only coming from very slight differences in time or scale. Admittedly we notice that our
clustering algorithm performs poorly during this time, splitting up locations somewhat arbitrarily when it might
have been more reasonable to just cluster all of them together. Still we’d like to hypothesize that during this
time period, because restrictions began to loosen and travel opened up again, we saw much more country-wide
similarity in spread compared to the geographically partitioned results of the first two plots. Finally note that
not much interesting happens during the downturn period that happened around 5/31/2022, as things seemed
to calm down for the remainder of the year.

While it’s particularly difficult to validate our results, we can at least check that our clustering satisfies a
few reasonable assumptions distinguishably better than a random clustering baseline does. To do so we will
compute a few measurements, ρ for our clusters.

Assumption 1. A cluster should have waves which are sufficiently distinct (in timing or shape) from the waves
of any other cluster in the clustering

This is a standard assumption for any clustering algorithm and to check, we compute the silhouette coefficient
ρ̄sil, defined as the average of silhouette scores ρsil for each wave wi. Let f(wi) = 1

|Cwi
|−1

∑
wj∈Cwi

ddtw(wi, wj)

be the average dtw distance between wi and all other waves in its own cluster.

Also let g(wi) = minC• ̸=Cwi

1
|C•|

∑
wj∈C•

ddtw(wi, wj) be the average distance of wi to some closest other

cluster for which wi is able to join under clique constraints. With these the silhouette score for wi is defined as

ρsil(wi) =
g(wi)− f(wi)

max(g(wi), f(wi))
(3)

If there is no other cluster which wi is able to join under the clique constraints, we simply let ρsil(wi) = 0.
We can then compute the silhouette score of a clustering ρ̄sil(C) as the average of ρsil(wi) scores for every wave
segment in W. Doing so gives us a numerical measure for how well our algorithm is able to distinguish the
waves which it was intended to cluster. However, we will note that this should be a given. Our algorithm is
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Figure 3: Dus clustering over time with Unimodal segmentation. In each row we show a representation of
the clusters present for chosen time, evolving over time. We show a geographic map (left) where we assign
a color to each of the current clusters and color the locations represented in each of them. We also report
average government response scores (middle) on a scale from 0 to 100 for each of the clusters, and their
average waves of infection over time on a log scale (right).

designed to cluster waves and we specifically chose parameters to boost this score. We are most interested to
see how our clustering does with respect to other measurements.

Assumption 2. The locations for a cluster’s waves should be geographically similar
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Figure 4: Comparisons against random clustering algorithms for assumptions on ρ̄sil (left), ρ̄geo (middle),
and ρ̄gov (right) for Dus. For each experiment we test with each of the unimodal, SIR, and Wavfinder
segmentation methods.

Given that the causal mechanism for the spread of Covid-19 is respiratory contact, we hypothesize that
clusters should be formed by locations which are close together – and for which contact is therefore more likely.
We expect that at times during the pandemic long distance travel was common enough for this not to be true.
However we claim that especially during periods of intense quarantine, the overall trend should be geographically
similar. To check for this, we’ll measure the geography with a distance in miles dmiles between any two locations.
More specifically, for any two wave segments wℓ1 , w′

ℓ2
the dmiles(wℓ1 , w

′
ℓ2

) distance computes the distance in
miles between locations ℓ1 and ℓ2. To test the assumption, we’ll compute a geographic score for each cluster as
the average pairwise distance in miles ρgeo(Ci) = 1

Ci

∑
(wℓ1

,w′
ℓ2

)∈Ci
dmiles(wℓ1 , w

′
ℓ2

). The geographic coefficient for

a clustering, ρ̄geo(C) is then taken to be the average of scores over all clusters in C.

Assumption 3. The locations for a cluster’s waves should have similar governmental response policies during
the time period of the wave

Finally we expect that a local government’s response to Covid-19 has some significant effect upon how that
location experiences infection. For example, a location whose government imposed strong public health policies
might have a much less intense wave of infection compared to a location which was more relaxed in its containment
of the virus. To measure this, we use data from [16] which records a time series of government response scores
for each location in Dus and Deu (unavailable for Dco) along the same time-period. Specifically, we use datasets
Dus

gov and Deu
gov which are identical in shape to the original datasets, but which have entries replaced with

government response scores. We’ll then use the same segmentation boundaries as were used originally for our
clustering to split these datasets into corresponding government response waves h. A government response
clustering Cgov is then created by replacing every infection wave segment w with its corresponding government
response segment h, while keeping the overall structure of the clustering the same. To measure if our methodology
produces clusters with distinct governmental response policies, we compute average pairwise distances among
response waves using the dynamic time warp distance: ρgov(Cgovi ) = 1

Cgov
i

∑
(h,h′)∈Cgov

i
ddtw(h, h′). To measure

for a clustering, we will again compute the average over all clusters as ρ̄gov(Cgov).

These 3 assumptions are tested for each of the non-random implemented segmentation models – unimodal,
SIR, and wavefinder – which are clustered using clique-cluster() . We then test these observed values
against a few random baselines. Firstly, we experiment with keeping each of segmentation methods, but randomly
clustering with random-clique-cluster() . Next, we replace the implemented segmentation methods with
the randomized k-random-segment() and again cluster normally with clique-cluster() . Finally, we ran-
domize both parts of the methodology by using both k-random-segment() and random-clique-cluster()
. For each of the randomized methods we compute 1,000 samples to estimate distributions for each of ρ̄sil, ρ̄geo,
and ρ̄gov. We limited ourselves to this relatively small number of samples given the computational difficulties
associated with the task. Importantly, any time we use k-random-segment() we default to k wave segments
used for each location in the unimodal model. In general, whenever parameters are required for segmentation
we resort to whatever is used for the unimodal model. Results for the clustering of Dus are shown in figure 4.

By our assumptions, we expected that compared to the random methods, the non-random observed values
would have larger silhouette coefficient ρ̄sil, and that they would have both a smaller geographic ρ̄geo and
government response ρ̄gov coefficients. In this example, we do indeed see that our assumptions seem to be
affirmed. The non-random implementations for all segmentation methods show statistically significant results
across all three measurements when compared to their randomized versions. The difference is most striking
for silhouette coefficients, where the only randomized method that comes close is random segmentation with
non-random clustering – indicating that, as expected, our clustering algorithm is doing most of the work to
improve this score. We note, however, that this is not the case for Deu. Although the conclusions for the
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silhouette coefficient are the same, the other geographic and government response validation measures no longer
hold. We point the reader to the appendix for visualizations and more information on differences between
segmentation methods, as well as complete results for Deu and Dco datasets.

6 Discussion

For US state level data, Dus, we found strong reason to believe that waves which are close with respect to
dynamic time warping distance are also similar both geographically and in terms of their public health response
to the pandemic. We believe that one of the most interesting parts of our methodology is to showcase how this
relationship changed over time. From results showcased in figure 3, we conclude that geographical similarity
between clusters was dynamic, changing significantly as the virus evolved and the country’s response fluctuated.
However, results for other the other datasets Deu and Dco are varied. For European countries we were surprised
to find that clusters are relatively dissimilar in both geography and government response when compared against
a random clustering baseline. This may point a difference in how the two regions of the world experienced and
responded to the pandemic. However we are careful not to make any strong conclusions since it may also be
an artifact of the data or of the geographical shape of the region. For US counties data Dco our methodology
performs much worse, finding scattered and uninterpretable clusters, perhaps because the data is so similar
between counties and there are very few distinguishable patterns. Despite these analytical difficulties, we
argue that our methodology motivates an important problem which might even be applied to other, related
spatio-temporal datasets. We argue that the work contained in this study introduces a novel, useful framework
to study the progression of the Covid-19 pandemic and for spatio-temporal occurrences in general.
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[24] Taneli Mielikäinen, Evimaria Terzi, and Panayiotis Tsaparas. Aggregating time partitions. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 347–356,
2006.

[25] Teshager Zerihun Nigussie, Temesgen T Zewotir, and Essey Kebede Muluneh. Detection of temporal,
spatial and spatiotemporal clustering of malaria incidence in northwest ethiopia, 2012–2020. Scientific
reports, 12(1):3635, 2022.

[26] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[27] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. nature, 435(7043):814–818, 2005.

[28] Kevin Quinn, Evimaria Terzi, and Mark Crovella. Characterizing covid waves via spatio-temporal decom-
position. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 3783–3791, 2022.

[29] Richard F Raubertas. Spatial and temporal analysis of disease occurrence for detection of clustering.
Biometrics, pages 1121–1129, 1988.

[30] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

[31] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[32] Romain Tavenard. An introduction to dynamic time warping. https://rtavenar.github.io/blog/
dtw.html, 2021.

13

https://rtavenar.github.io/blog/dtw.html
https://rtavenar.github.io/blog/dtw.html


[33] Evimaria Terzi and Panayiotis Tsaparas. Efficient algorithms for sequence segmentation. In Proceedings of
the 2006 SIAM International Conference on Data Mining, pages 316–327. SIAM, 2006.

[34] Loring J Thomas, Peng Huang, Fan Yin, Xiaoshuang Iris Luo, Zack W Almquist, John R Hipp, and
Carter T Butts. Spatial heterogeneity can lead to substantial local variations in covid-19 timing and severity.
Proceedings of the National Academy of Sciences, 117(39):24180–24187, 2020.

[35] Stefan Thurner, Peter Klimek, and Rudolf Hanel. A network-based explanation of why most covid-19
infection curves are linear. Proceedings of the National Academy of Sciences, 117(37):22684–22689, 2020.

[36] O. Wahltinez et al. Covid-19 open-data: curating a fine-grained, global-scale data repository for sars-cov-2.
2020. https://goo.gle/covid-19-open-data.

[37] Vasilios Zarikas, Stavros G Poulopoulos, Zoe Gareiou, and Efthimios Zervas. Clustering analysis of countries
using the covid-19 cases dataset. Data in brief, 31:105787, 2020.

[38] Stephen X Zhang, Francisco Arroyo Marioli, Renfei Gao, and Senhu Wang. A second wave? what do people
mean by covid waves?–a working definition of epidemic waves. Risk Management and Healthcare Policy,
pages 3775–3782, 2021.

7 Appendix

7.1 Comparison of Segmentation Methods

Figure 5: Clusters present at 11/27/2020 for clusterings computed with unimodal (top), SIR (middle), and
wavefinder (bottom) segmentations.

Importantly we’d like to understand the differences in clustering produced by each of our segmentation methods.
For each segmentation method we select values for the time overlap parameter δ and the distance threshold
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parameter η by computing silhouette scores ρ̄sil over a grid of options and selecting the pair which maximizes
the score. We then run clique-cluster() with these selected values until we reach a stopping point where
no two clusters may be joined to form a clique. Importantly, the clusterings from each of the segmentation
methods are comprised of different items (wave segments) and can have very different sizes both on an individual
cluster scale and as a whole. This makes it tricky to compare between clusterings and select an appropriate
segmentation method.

In figure 5 we visually compare the clusterings produced by each of the segmentation methods for Dus.
To do so we select a single time stamp, 11/27/2020, and display clusters which are fully present with maps
on the left as well as their average wave segments on the right. In some form, all three clusterings capture a
significant wave event happening around this time stamp. However, the geographical patterns are different for
each. unimodal and wavefinder segmentation methods show the most agreement, with strongly cohesive clusters
in the south and parts of the midwest. SIR, on the other hand, seems to fall out of line with the others. It
produces a clustering with much less geographical cohesiveness.

Similarity in actual segmentations between unimodal and wavefinder, as discussed in section 4.1, may play a
role in these observed outcomes. For our experiments we strongly relied on the unimodal segmentation method,
since it seemed to be both validated by similarity to wavefinder while also satisfying our desire for carefully
modeled wave segments. While the SIR method had the benefit of being a epdemiologically motivated model,
we did not find much evidence to support its use in our experiments.
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7.2 European Countries

Figure 6: Deu clustering over time with Unimodal segmentation. In each row we show a representation of
the clusters present for chosen time, evolving over time. We show a geographic map (left) where we assign
a color to each of the current clusters and color the locations represented in each of them. We also report
average government response scores (middle) on a scale from 0 to 100 for each of the clusters, and their
average waves of infection over time on a log scale (right).

Clustering with the unimodal segmentation method is also shown for Deu in figures 6 7 and comparisons against
random baselines in figure 8. Looking at results we notice some patterns which are different than for Dus. Some
of this may be caused by the fact that this dataset has infection data which reaches back further in time than
the state dataset did. Here we start our analysis in February of 2020, finding only four clusters fully present this
early on, and seeing very little geographic cohesiveness (Note: the light blue cluster which is too small to see on
the map is represented by locations Andorra and San Marino). As time progresses the pandemic became much
more widespread across the continent. At the time stamps of 10/29/2020 we see a large wave experienced by
almost all of Europe, and which does show on the map to be somewhat geographically contained. For example,
locations in western Europe such as the UK, France, Spain, and Italy all cluster together. Continuing in time,
however, we notice that this pattern does not hold. Throughout the rest of the pandemic we see much less
geographical cohesiveness. While we occasionally we see some similarity in eastern Europe, the pattern does not
seem to be broad enough to support the same kind of claims we make for US states.

In fact, looking to our validations against random baselines in figure 8, we notice that while our methods do
seem to be significant with respect to the silhouette coefficient, the same cannot be said for both the geographic
and government response coefficients. In other words, while we can claim that the clustering is producing
groups of waves which are distinct, we cannot also say that those groups similar geographically or in terms of
government response. A random clustering, may in fact produce clusters which are similar on both of these
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Figure 7: Extension of figure 6.

measures.

Figure 8: Comparisons against random clustering algorithms for assumptions on ρ̄sil (left), ρ̄geo (middle),
and ρ̄gov (right) for Deu. For each experiment we test with each of the unimodal, SIR, and Wavfinder
segmentation methods.
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7.3 Northeast US Counties

Figure 9: Northeast Dco clustering over time with Unimodal segmentation. In each row we show a
representation of the clusters present for chosen time, evolving over time. We show a geographic map (left)
where we assign a color to each of the current clusters and color the locations represented in each of them.
We also show their average waves of infection over time on a log scale (right).

Taking another point of view, we were interested to see how results may change if we move from a state level to a
smaller county level perspective of the pandemic. In this experiment we selected a subset of US counties coming
from the northeast region of the country, including all from the states of Connecticut, Maine, Massachusetts,
New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.

We find that what was most striking in this experiment was how similar the waves appear to be in each of
the clusters. In the beginning of the pandemic there was good separation between each of the cluster’s waves,
but as time progresses things look nearly the same. This is also represented in the cluster maps, in which
clusters are often scattered across the entire region.

This being said, we computed a limited random baseline test for this experiment, which only includes results
from the unimodal segmentation method (the reason being that this was a much more computationally costly
experiment to run) and for the silhouette and geographic validation measures (since government response data
was not collected on the US county level). We observe that clusters do in fact seem to be significantly similar in
geography. However, for the aforementioned reasons, its much more difficult to decide whether this is a strong
conclusion or is otherwise just an artifact of the data and the geographical patterns of the region.
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Figure 10: Extension of figure 6.

Figure 11: Comparisons against random clustering algorithms for assumptions on ρ̄sil (left), ρ̄geo (right). In
this experiment we only tested with the unimodal segmentation method.
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