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Abstract. Recent work on interpretable clustering focuses on forming a
partition of the input data such that each cluster is associated with a log-
ical, conjunctive rule description, and where every point must belong to
one cluster. We build upon previous work by lifting the requirement that
our cluster descriptions should characterize the entire dataset. Rather, we
show that by ignoring outliers and boundary points lying between multi-
ple clusters, we produce shorter rule descriptions with improved cluster
quality. To that end, we define the PARTIAL INTERPRETABLE CLUSTER-
ING problem, taking a dataset as input and producing a rule-based clus-
tering for a subset of data points as output. We design a framework which
builds concise, conjunctive rules with decision trees, collecting them to
form more generally structured decision sets. For any given decision set,
we then introduce efficient algorithms which leverage techniques from
submodular optimization and outlier detection in order to identify the
subset of the data points we choose to describe. Our experiments with
real datasets demonstrate the efficacy of our methods in creating cohe-
sive clusters — in terms of distance or cost — which are amenable to short
and precise descriptions — in terms of conjunctive rule length.

Keywords: Interpretable Clustering - Explainable AI - Decision trees -
Decision sets - Climate Data

1 Introduction

Interpretable machine learning models use simple, logical rules as the core of
their decision-making process [25,26]. When rules are concise and easy to un-
derstand, they allow for both strong, critical data analysis and deeper insight
into a model’s ability to make accurate and sensible predictions. Unsupervised
clustering problems are one domain in which interpretability has recently taken
a strong hold [15]; it has been shown [9,11,23] that binary decision trees can be
used to recursively split data points based on simple inequalities for individual
features, while still maintaining competitive cost performance.

Our work departs from previous approaches to interpretable clustering [1,23]
by adopting the perspective that an interpretable clustering model need not
cover or explain every point in its input dataset. Furthermore, we produce clus-
terings for which clusters may overlap or share common data points. With such
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relaxations, we open the door for cluster descriptions with considerably differ-
ent logical structure, producing rules which are shorter and easier to parse, and
often improve the clustering performance on the subsets of points that remain
covered.

Specifically, we design clustering models in the form of decision sets. Whereas
a tree makes recursive decisions which are forced to account for the entire dataset
all at once, a decision set makes local decisions as an unstructured list of rules
in the form: If x then cluster y. User studies have previously shown that decision
sets are more immediately understood by readers [18], however we also notice
an apparent advantage in the rule length i.e., the maximum number of logical
conditions used to distinguish any cluster. As an extreme example, consider a
k x k grid in two dimensions, where each grid cell contains a distinct cluster. Any
decision tree must have a depth or rule length of at least £2(log,(k)) to distinguish
each of the k2 clusters. Whereas a decision set may have a constant rule length of
four: for each cluster, an inequality for each of its four side boundaries. Similarly,
consider a dataset with k clusters for which points in cluster 7 contain ones in
feature ¢ and zeros everywhere else. In this case, any decision tree must have
depth k — 1, since we are constrained to sequentially distinguishing one cluster
from the rest. A decision set on the other hand may simply use one logical
condition for each cluster: if x; > 0 then cluster i.

B If (pepn_apr < -0.208) & (pepn_july > -0.246)
Then cluster 0

If (temp_jan < 0.04) & (pepn_mar < -0.186)
Then cluster 1

B If (pepn_july < -0.275) & (temp_may > 0.023)
Then cluster 2

B If (temp_july < 0.01) & (temp_jan < 0.134)
Then cluster 3

B If (temp_oct > 0.047) & (temp_feb > 0.064)
Then cluster 4

B If (temp-apr < -0.011) & (temp-nov > 0.034)
Then cluster 5

(a) IMM Decision Tree (b) Forest-Depth-2 Decision Set

Fig. 1: Decision Rules separating 6 clusters for the Climate dataset. We com-
pare the readability of a decision tree clustering (left), as compared to a decision
set (right) which satisfies 80% of data points.

In this paper, we introduce algorithms for both building large sets of con-
cise rules and selecting size-k subsets of them to form a decision set clustering.
With a random forest approach, we train a collection of trees in which only a
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single chosen cluster is distinguished from the rest, allowing for brief descrip-
tion. This is complemented by a submodular pruning objective and an efficient
greedy heuristic designed to maximize coverage while minimizing overlap. With
experimental evidence, we show that our algorithms exhibit efficient clustering
performance, measured with a novel definition of clustering distortion on the
subset of covered points.

To showcase our method’s interpretability and analytical strengths, we dis-
play qualitative evidence with a novel analysis of a Climate change dataset, con-
taining information on percent change in temperature and precipitation levels
for various locations in the continental US [24,28] (see section 5.2 for a complete
description). Figure 1 compares a decision tree model to that of a decision set.
Whereas the decision tree requires a depth or rule length of five logical conditions
to describe the two clusters at its furthest leaf nodes, the decision set is built
from rules with a consistent length of two. Moreover, Figure 2 shows geographi-
cal evidence that the resulting clustering is comparable. Although some locations
are overlapped or left uncovered, we notice that these locations are often found
near the boundaries between clusters. In fact, our experiments highlight that our
method is effective in removing boundary points for which cluster membership
is indistinct, allowing for models with improved clustering performance on the
remaining set of points.3

(a) IMM Decision Tree (b) Forest-Depth-2 Decision Set

Fig.2: Clustered Maps for the Climate dataset. We compare a complete par-
tition clustering with a decision tree (left) to a partial decision set clustering
satisfying 80% of data points (right). Samples which are uncovered are left un-
colored and those with overlapping membership are colored in grey.

2 Related Work

With a rise in popularity of interpretable machine learning [25,26], more at-
tention is being given to its adoption into the toolbox of clustering algorithms.

3 All code and data for reproducing our experiments is anonymously available here.


https://www.dropbox.com/scl/fo/hxionql8tct1wk40wyqae/ADdqAZl4c9BXAq7FCWFFNTo?rlkey=cn7bvgbznc8kjbc4e93lszido&st=oh6dimko&dl=0
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Beginning with work on the novel iterative mistake minimization (IMM) algo-
rithm [23], many approaches have proposed new and interesting variations on
decision tree clusterings [9,10]. We provide a complete description of IMM within
our experimental section and direct reader attention to a more complete survey
[15] for its surrounding variations.

Our most direct relation from this line of work comes from Bandyapadhyay
et al. [1], who study decision tree explanations in the context of outlier removal.
Inspired by outlier removal for problems such as KMeans [5,21], this study seeks
to determine an minimal number of points, s, to be removed in order to exactly
replicate a given reference clustering (obtained with KMeans or similar) in the
form of a decision tree. To do so they design an efficient approximation algorithm
which removes at most s(k — 1) misclassified points during creation of their tree.
Since s is an unknown constant, however, this offers no practical control over
the number of points actually removed. Their work also analyzes an algorithm
with more controlled removal, but for the purpose of complexity results rather
than as an efficient algorithm to be used in practice.

Other related perspectives have emphasized the need for better explainabil-
ity within decision trees [16,17], introducing penalties for both rule length (tree
depth) as well as the total number of nodes within a tree. While our study is
similarly concerned with both outlier removal and improved explainability, we
build upon the aforementioned work with the use of unstructured decision sets,
freeing us from the constraint of needing a rule length of at least log, k to se-
quentially separate k clusters. Furthermore our work highlights the relationship
between objectives of coverage, cost, and rule length; we observe tradeoffs be-
tween large coverage with small rule length and clustering cost performance. We
argue that as a whole, explainable clustering with unstructured sets of rules is
an approach which remains under-studied. Recent work has focused on creating
rectangular or polyhedral rule descriptions [6,19,30], others have studied asso-
ciation rules in the context of graph clustering [27], and there is also a longer
history of unstructured fuzzy rule descriptions in which points are given degrees
of associated cluster membership [12,22]. To our knowledge, however, none have
done so while simultaneously studying a notion of partial clustering or coverage.

We also note that similar rule selection frameworks have recently been consid-
ered for explainable clustering problems [4,13], in which descriptions are chosen
from a larger set of rules in order to create an explanatory model for a refer-
ence clustering. As in our own work, objectives in these settings are designed to
capture the tension found in maintaining accurate cluster coverage while min-
imizing overlap. However, they define and solve their problems using complex
mixed-integer or conditional programs. Furthermore, their rule-generation pro-
cesses are left underspecified [4], or are only applicable for categorical data types
[13]. We argue that our framework introduces both improved methods for rule
generation, as well as a simple and considerably more efficient (polynomial time)
algorithm for rule selection.

Our study has also taken significant inspiration from work outside the im-
mediate realm of interpretable clustering. Specifically, we build directly upon
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work which uses decision sets in the context supervised learning problems with
categorical data [18,31]. For these settings, authors have designed useful sub-
modular objectives which encourage large-coverage selections of accurate and
interpretable rules from within a larger decision set collection. Our work ex-
tends theirs by introducing a novel submodular objective which is efficiently
solved with the recently-proposed distorted greedy algorithm [14]. Moreover, by
considering the unsupervised setting, we design a rule-generation process for
real-valued data, and also introduce the notion of partial clustering cost and
clustering distortion.

3 Notation

3.1 Clustering

Let X = {x1,%2,...,7,} be a dataset with n entries z; € R%. For a single point
xz € X, let x; be its value for the ith feature. We say that a clustering C is
a size k set of data subsets or clusters C; C X. Importantly, we depart from
standard definitions by allowing clusters to share common data points, as well
as by allowing for points which do not belong to any cluster. For any clustering
let Xe = Uciec C; be its set of covered points, which belong to at least one
cluster. For any subset of points Y C X let its partial clustering C(Y") be the
condensed set of clusters C; N'Y for all C; € C. We say the size of a partial
clustering |C(Y)] is its number of non-empty cluster sets. For a single point, z, if
|C(x)| > 1 then it is said to overlapping, since it must belong to multiple clusters.

For any cluster C;, its corresponding center, u;, is defined as mean of its
data points. We use U when referring to the complete set of centers for each
C;. To evaluate clusterings which may have overlapping cluster membership or
uncovered points we consider the following normalized variation of the classic
sum of squared errors cost.

Definition 1 (Clustering Cost). For a clustering C,

1 & Iz — w3
cost(C) := X Z Z o) (1)

i=1 x€C;

Finally, throughout our study we will focus on making comparisons between
different clusterings. Since clusterings may cover different sets of data points,
however, even a normalized cost comparison will fail to capture a meaningful
relationship. For example, one clustering may see a smaller cost simply because
it ignores a distant data point which another does not, rather than because it
actually improves upon the underlying model. Therefore, we compute a cost
ratio between clusterings for a given set of commonly covered points.

Definition 2 (Distortion). For clusterings C, C' and a subset of data' Y such
that Y C X¢ and Y C X¢r,
cost(C(Y))

distortion(c, Cl7 Y) = m (2)
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For a set of points Y which isn’t fully contained by either clustering, we say that
the distortion is undefined or infinite.

3.2 Predicates and Rules:

A predicate r : R? — {True, False} is a boolean function which returns the
evaluation of a point = on a given logical condition. For our purposes, we restrict
our attention to simple axis aligned conditions of the form x; < 7. A rule R is
a boolean function whose value for point x is defined by a logical composition
of the values r1(x),...,r,(z) for = of some predicates r1,...,r,. We focus our
attention on rules which are conjunctions of predicates, and therefore use only
logical A (AND) operators. We use |R| to denote the length of the rule, or the
number of predicates  conjoined within its formula. We also define Xy to be the
subset containing all points z € X for which R(x) is True. Likewise a rule set S
is taken to be a collection of rules R, and we use Xg := URGS X g to denote the
set of all points from X covered by at least one rule in S.

3.3 Decision Sets

Let a decision set D be a pair (S,v), for which a rule assignment function
1 : § — N maps each rule R € S to a single cluster label. Notice that any decision
set induces a very natural clustering upon a given dataset X. Specifically, let
cluster C; = URe$,¢(R):i Xpg be the set of all points covered by a rule with
label i. We refer to an induced decision set clustering as Cp. Finally, we note
that a decision tree 7 is a specialized form of a decision set for which rules &
are recursively structured in the form of a binary tree. Each rule R € & may
therefore be thought of as a conjunction of conditions found on a path from the
root to a given leaf.

4 Partial Interpretable Clustering

We now introduce a partial clustering problem, which is studied throughout
the rest of our paper. Tied to the idea that an interpretable clustering need
not describe every instance, we search for low-cost decision set clusterings that
satisfy given coverage constraints. In doing so we adopt an approach which builds
upon a given reference clustering Cof, found with KMeans. Specifically, we focus
our attention upon a relative comparison which considers the effect of using a
decision set clustering to model or characterize a set of points shared with the
reference.

Problem 1. PARTIAL INTERPRETABLE CLUSTERING (PIC)
Given a dataset X with size n and a reference clustering C,ef, find a decision
set D and subset of data Y C X with size |Y| > mn for 7 € [0, 1] such that the
induced clustering Cp upon Y satisfies minimal distortion,

arg min distortion(Cp, Cret, Y). (3)
D,Y s.t. |[Y|>1n
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The remainder of this section describes the heuristic strategies we consider
for solving the PIC problem. Our strategies are designed assuming access to
methods for fitting an appropriate decision set D to a reference clustering, and
we describe our methods for doing so in the next section. As a starting point, we
note that the algorithm of Bandyapadhyay et al. [1] (described in section 5.1)
produces a solution with ratio exactly 1, if it happens to satisfy the coverage
requirement. However, since the algorithm offers no control over how many points
are removed, we do not consider it to be a robust solution.

4.1 Removing Outliers

A naive strategy may start by removing a subset Z C X of outliers from C,¢f, and
then retrain a decision set on the partial clustering Cpo¢(Y), where Y = X \ Z.
While it is not immediately clear that doing so would improve the cost ratio,
it does leave the door open for fine-grained control over the number of points
removed. Throughout our work, we consider outlier points to be those that lie
on the boundaries between clusters and are therfore difficult to describe with
axis-aligned rules. More specifically, for a point x and a set of centers U, let u*
be the center smallest distance to x and u’ be the center with the next smallest
distance. The distance ratio is then defined as follows.

Definition 3 (Distance Ratio). For a given point x € X and set of represen-

tative centers U,

. !
distance-ratio(x,U) := M

(4)

Intuitively if a data point lies between two clusters, or is otherwise sufficiently
far from every cluster, the ratio will be close 1. Therefore, when using an outlier
removal strategy, we rank points by their distance ratio to centers from Ci¢, and
remove a 1 — 7 fraction of the smallest.

IEE

4.2 Selecting Rules

Alternatively, we consider a method in which k rules are selected from a trained
decision set D = (L,), where a set of m rules £ satisfies m > k. To do so, we
focus our attention upon rules which best describe the reference clustering, and
which must therefore also produce smaller cost ratios. In particular, we state an
objective which accounts for both accurate coverage of the reference clusters, as
well as minimal overlap among the set of selected rules. First, we compute the
number of cluster points which have been covered by a rule with the same label
by the function

98 =>"1 U Xrnai. (5)

i=1 | ReS p(R)=i

Next, since we would also like to ensure that the rules selected to represent a
cluster have minimal overlap with data points from other clusters, we pair the
previous objective with an overlap penalty and state the following claim:
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k
8)=3_ > [Xgn(X\C) (6)

i=1 ReSy(R)=i

Claim. The function ¢g(S) is a monotone, submodular function and ¢(S) is a
monotone, modular function.

To see why, notice that g(S) is simply a sum of k coverage functions — which are
not unlike standard set-cover objectives — and that ¢(S) is a sum in which rules
R are always penalized independently (there is no interaction between rules in
the sum). It follows that a combined objective,

f(8) = g(S) = Ac(S), (7)

is a submodular-modular function, for which maximization would mean both
large accurate coverage and small overlap. Such a problem: maxsc s |s|=x f(S)
is, however, NP-hard. We therefore rely upon results from Harshaw et al. [14],
who show that a (1— %) approximation is achievable. Specifically, their distorted
greedy algorithm iteratively adds new rules R to a developing set S by greedily
taking those which maximize a weighted sum of over items g(S U R) — g(S)
and Ac(R). In early iterations the algorithm favors rules with large coverage,
but gives more consideration to overlap as the size of the solution set increases.
Since each round computes the marginal gain of all potential rules and we repeat
the process k times, the runtime may be expressed as O(kmn).

Also included within Equation (7) is a tuning parameter A which allows for a
controlled trade-off between accurate coverage and overlap, with A = 0 admitting
solutions that may cover arbitrarily large portions of the input space. To ensure
that the coverage requirement 7 is satisfied for PIC, we therefore search over a
given range A of A values, allowing for large overlap by using smaller \ values
if necessary. The price of doing so, however, is increased cost for the clustering
induced by the selected set of rules & and their assignment . Whenever we find
multiple solutions which satisfy the coverage requirements, we therefore favor
those that produce clusterings with smaller cost.

5 Experimental Results

5.1 Algorithms

In our experiments we compare against the following baseline algorithms for
producing clusterings and decision trees. For all decision trees considered, data
is recursively split in the form of feature threshold pairs (4, 6) at every non-leaf
node. First, KMeans is used to produce reference clusterings C.of, and we use a
standard implementation with a KMeans ++ initialization method. Next, IMM
or iterative mistake minimization [23] is an interpretable method which builds
a decision tree utilizing centers u from C..s. Starting at the root, both data
points and centers are recursively split until the tree has exactly k leaves (each
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containing a single cluster center). Every leaf (rule) is assigned the label of the
cluster whose representative satisfies its conditions. Finally, we also consider
the explainable clustering algorithm designed by Bandyapadhyay et al. [1]. In
their algorithm a decision tree brings outlier removal into its training process by
removing points which become separated from the majority of their cluster after
any new split. Splitting conditions are therefore greedily chosen to minimize the
number of removals.

These are then compared to the the strategies described in section 4. First, we
use IMM-outliers as an algorithm which removes outlier points using distances
to centers in C,or and trains an IMM tree upon the remaining set of data.

Our main strategy, however, is the interpretable Forest clustering algorithm.
For it we start by creating a random forest in which canonical decision trees are
each trained to distinguish a single, uniform random cluster with label ¢ in a one-
versus-all fashion. In other words, each tree solves a binary classification problem
where training points are given label 1 if they belong to cluster i and label 0
otherwise. Note that we use reference cluster labels to do so and, therefore, C,ef
must be a standard, full partition clustering. Leaf node rules R are collected
to form a general purpose decision set by taking those with a predicted label
of 1, and assigning them to the cluster being distinguished, so that ¢ (R) =
i. Each tree is trained upon a random 75% portion of the original data set,
and is constrained to use at most a depth (rule-length) uniformly chosen from
[1, h]. We describe variations of the algorithm with maximum allowed depth h as
Forest-Depth-h. All experiments are performed using 1000 trained trees, and
the entire process is repeated and averaged over 1000 random trials.

Each time a forest decision set has been formed, we select a size k subset
using the distorted greedy procedure outlined in section 4.2. To choose values of
A we find that an inexpensive grid search over 50 values in the range of A = [0, 5]
is sufficient to explore the space of solutions for our experiments.

5.2 Datasets

To test our algorithms, we make use of the following datasets. Unless otherwise
specified, we take the number of clusters to be the number of unique classifi-
cation labels associated with the dataset. Our first three real valued datasets
are preprocessed using standard scaling, and the remaining image datasets are
normalized to the range of [0, 1].

The Climate (n = 344, d = 24, k = 6) dataset is collected and maintained
by the National Oceanic and Atmospheric Administration [24,28]. It is com-
prised of 344 climate division locations, which partition the continental US into
small zones of similar climate. For each of 12 months in a year, measurements
for climate divisions are given by both a percent change in temperature (temp)
and percent change in precipitation (pcpn) levels (giving 24 total features). Per-
cent change is computed as the relative difference between average values for
temperature and precipitation during period of 2013-2023, and averages from
a historical period of 1900-2000. The number of clusters is chosen using an el-
bow heuristic on an analysis of KMeans cost. The Anuran (n = 7195, d = 22,
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k = 10) dataset contains samples of anuran frog call recordings, measured over a
frequency spectrum with 22 variables, and which are classified into ten different
sub-species [7]. The Cover (n = 145253, d = 10, k = 7) dataset characterizes
forest cover types for samples taken from wilderness areas in Colorado [2]. All
categorical features were removed and the number of samples is a random 25%
of the original dataset. Finally, the Digits (n = 1797, d = 64, k = 10)[20],
Mmnist (n = 17500, d = 784, k = 10) [8], and Fashion (n = 17500, d = 784,
kE = 10) [29] datasets are used as standard datasets for evaluation. For Mnist
and Fashion, the number of samples is a random 25% of the original data.

5.3 Distortion with Increasing Coverage

Our central experiment studies the dynamic relationship between the minimum
coverage requirement, 7, and clustering distortion for each of our algorithms.
Figure 3 showcases the result of recomputing and measuring our algorithms as
coverage requirements are incremented from 50-100%. In each plot, we display
the distortion of the IMM-outliers and Forest algorithms relative to a single,
common KMeans reference clustering. At each coverage step, the IMM-outliers
distortion is computed upon its subset of remaining non-outlier points, and for
all Forest methods we use the set Xs of points covered by rules selected with
the greedy procedure. For each plot we also include an IMM baseline distortion,
which is computed relative to the common reference clustering and is also taken
over the same subset of data points used by the algorithm it compares against.
Finally we note that three variations of Forest were included in the experiment,
which sequentially allow for their trees to take maximum depths of 2,3, and 4.

We begin with the observation that the IMM-outliers algorithm does poorly
to improve upon its IMM baseline. While we notice improvements within regions
of low coverage requirement for the Climate, Anuran, and Digits datasets, the
pattern is inconsistent and quickly diminished as 7 increases. We therefore con-
clude that PIC is a problem which requires more careful algorithm design. For
the displayed Forest algorithms, we observe a strong pattern in which distor-
tion is often close to the reference value of 1 until around 90% coverage, where
it typically sees drastic increase. We take this as evidence that the algorithms
are efficient in covering easily explained parts of the data, but for large coverage
requirements, are forced to select rules with a high degree of overlap. Note that
complete coverage is not a guarantee and the displayed lines are cut off once
the selection process cannot find anything larger. This is dependent upon the
generated set of rules, and for a dataset such as Mnist, our rules appear to be
discerning enough to only produce low coverage solutions. Among all Forest
experiments, we also observe that the distortion performance is significantly im-
proved by increasing rule length. The most dramatic difference is seen for the
covertype dataset, which performs very poorly with an initial depth of 2. We
argue that efficient performance is not always a given with small-length rules,
especially for clusterings which are dependent upon the full feature space.
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Fig. 3: Distortion with increasing coverage. Columns display distortion (y-
axis) as a function of minimum required coverage, T (x-axis) for each of the
decision set algorithms respectively. Distortion is computed relative to a KMeans
reference and is compared to an IMM baseline in each plot. Rows display results
from each experimental dataset.
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5.4 Interpretability Evaluation

Motivated by the goal of producing highly interpretable rules, we also show
evidence that our Forest algorithms do well to outperform baseline decision
tree algorithms in terms of rule length, while still maintaing small overlap and
reasonably large coverage. Taking inspiration from [17,18|, we evaluate our al-
gorithms based upon the following interpretability measurements, and report
comparisons to our baselines in Table 1. We observe that even the most com-
plex Forest-Depth-4 often gives significant improvement to both maximum and
weighted rule length. We also notice that average overlap tends to be small, with
a large majority of data points belonging to a single cluster in all methods. We
note that for the algorithm of Bandyapadhyay et al., without control over
coverage we find scenarios such as the Digits or Fashion datasets for which its
default cover is significantly lower than that of Forest, even though our previous
experiment shows Forest maintains low distortion.

Definition 4 (Maximum and Weighted-Average Rule Length). For a
dataset X and ruleset S, we measure the maximum length of all its rules as
max-length(S) := maxges |R|. With a coverage sum, q(S) := > pcs | Xr|, we
also say that

weighted-length(X, S) Z |XR||R|. (8)

RES

Definition 5 (Coverage and Overlap). For a given dataset X with size n
and clustering C, let the fraction of points belonging to at least one cluster be

coverage(C) = ‘Xd . Likewise, let the average cluster membership be evaluated
as
overlap(C) : X Z |C(x 9)
| ‘ rzeXe

5.5 Characterizing Uncovered and Overlapped Points

Finally, we give evidence supporting the conclusion that data points which are
left uncovered, or which overlap with multiple clusters, are likely to be outliers
on the boundaries of multiple clusters. Figure 4 displays distance ratio distri-
butions corresponding to the settings considered in Table 1. For each algorithm
and dataset we show distributions for three subsets of points; those which are
uniquely covered by a single cluster, those which are overlapping, and those
which are left uncovered. We observe an apparent trend in which the distri-
bution of overlapping and uncovered points is skewed toward smaller distance
ratios, indicating they are more likely to be boundary points. This is especially
noticeable for Forest-Depth-4 and the algorithm of Bandyapadhyay et al.
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Table 1: Interpretability Measurements for a setting with 80% required
coverage (aside from Mnist which is only given a requirement of 60% since it fails
to consistently cover much larger). Measurements are computed for maximum
rule length (max), weighted average rule length (weighted), coverage, overlap,
and partial clustering cost (cost).

Dataset Method max | weighted | coverage| overlap| cost
IMM 5 3.65 1.00 1.00 12.30

Bandyapadhyay et al. 5 3.58 0.90 1.00 11.49
IMM-outliers 5 3.61 0.80 1.00 10.67

Climate Forest-Depth- 4 4 3.37 0.85 1.00 11.35
Forest-Depth- 3 3 3.00 0.95 1.03 11.60
Forest-Depth- 2 2 2.00 0.83 1.04 10.94

MM 6 5.32 1.00 1.00 8.73

Bandyapadhyay et al. 6 5.31 0.86 1.00 6.29
IMM-outliers 7 5.68 0.80 1.00 5.79

Anuran Forest-Depth- 4 4 4.00 0.80 1.00 5.64
Forest-Depth- 3 3 3.00 0.81 1.02 6.54
Forest-Depth- 2 2 2.00 0.81 1.07 7.87

IMM 4 3.28 1.00 1.00 5.57

Bandyapadhyay et al. 4 3.29 0.78 1.00 4.58
IMM-outliers 4 3.28 0.80 1.00 5.10

Cover Forest-Depth- 4 4 4.00 0.83 1.02  5.04
Forest-Depth- 3 3 3.00 0.87 1.14 5.50
Forest-Depth- 2 2 2.00 0.97 1.39 6.23

IMM 9 6.92 1.00 1.00 3.47

Bandyapadhyay et al. 9 6.74 0.65 1.00 2.39
IMM-outliers 8 6.05 0.80 1.00 3.17

Digits Forest-Depth- 4 4 4.00 0.80 1.05 243
Forest-Depth- 3 3 3.00 0.81 112 2.61
Forest-Depth- 2 2 2.00 0.82 1.26  2.85

IMM 8 6.21 1.00 1.00 43.89

Bandyapadhyay et al. 8 6.13 0.57 1.00 35.02
IMM-outliers 9 5.78 0.60 1.00 41.64

Mnist Forest-Depth- 4 4 4.00 0.60 1.05 37.57
Forest-Depth- 3 3 3.00 0.66 1.14 39.15
Forest-Depth- 2 2 2.00 0.64 1.25 47.37

IMM 7 5.05 1.00 1.00 39.30

Bandyapadhyay et al. 7 5.12 0.71 1.00 29.86
IMM-outliers 6 4.95 0.80 1.00 36.51

Fashion Forest-Depth- 4 4 3.63 0.83 1.08 32.33
Forest-Depth- 3 3 3.00 0.81 1.11  33.22
Forest-Depth- 2 2 2.00 0.82 1.16 35.51
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Fig.4: Distance Ratio Distributions for three classes of data points: unique
(single cluster), overlapping (multiple clusters), and uncovered (not clustered).
Legends in each plot show the respective sizes for each class. Columns corre-
spond to algorithms Forest-Depth-2-4 and Bandyapadhyay et al. respec-
tively. Each row shows results for a given dataset, and the coverage requirements
are taken to correspond exactly to those of Table 1.
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6 Conclusions

With both qualitative evidence for the Climate dataset and experimental re-
sults for measurements of distortion and rule length, we have shown that partial
clusterings with decision sets are a competitive approach to interpretable clus-
tering problems. Furthermore, we find that random forest generation paired with
greedy rule selection is a practical and efficient method for producing low-cost
clusterings with descriptions that offer improved user readability in terms of rule
length, as compared to previous methods. Finally, while our methods perform
well in experimental settings, we argue that the PIC problem remains open to
theoretical analysis, and notice that similar problems have been explored in the
field of social choice, where limited ordinal information models are compared by
cost ratios to their optimal counterparts [3]. An interesting and relevant direc-
tion for future study could focus on finding improved solutions or upper bounds
in which distortion is computed with respect to an optimal clustering, rather
than one produced by an existing algorithm.
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